The US prevailed in the Space Race of the 1960s — with STEM, we can win the ‘Earth Race’ too
Alta Ski Resort, just outside of Salt Lake City, received a whopping 903 inches of snow last winter, delighting skiers with continuous fresh powder. But Utah’s snowpack and precipitation patterns are of interest not just to ski resorts; they are of critical importance to the state’s drinking water, agriculture, industry and the health of the Great Salt Lake.
Was this the start of a period of abundant precipitation for the state or an aberration — a last gasp before the climate here settles into a drier equilibrium?
As with the snowfields of Utah’s mountains, one can ask about the future of the corn fields of Iowa, the coastline of Florida and myriad other places where the economy and way of life may be impacted by changes in Earth’s climate.
There is a propensity on both sides of the political aisle to become entrenched in partisan policy approaches, making it difficult to navigate our way through an uncertain and rapidly changing environment. However, I see these challenges as an opportunity to spearhead new technologies, innovations and policies that balance current economics and investments with our shifting circumstances. What might seem to be a setback must instead be viewed as a launching pad for our next giant leap forward.
The last time the U.S. was presented with an opportunity on this scale, which also arose from a threat to our way of life and to national security, was the Space Race of the 1960s. Scientific and technological advances were ignited by the challenges that humans faced when we first set our sights on landing on the moon. Our government, partnering with federal agencies and academia, demonstrated its resolve to defeat the Soviet Union in a race to the lunar surface. This initiative triggered investment across our economy, in universities and in technological infrastructure, spawning new markets and industries, creating jobs and sparking revolutionary advances in STEM fields and beyond. American science was viewed with pride at home and abroad.
In this new “Earth Race,” we have an opportunity for incredible innovation and progress. We can work collaboratively to promote science-based approaches while ensuring that current economic engines have the resources to adapt to new realities. However, if we fail to act, we will be left behind as other countries take the lead in creating a sustainable and economically vibrant future.
We cannot afford not to use the full power of American ingenuity, entrepreneurship and the world’s best university system if we are to seize the historic moment that we are in to fuel potent change. By many metrics we are already losing this race, as well as the spoils that will go to the leader of the global-scale technological transition that is just getting started.
China, for example, has doubled funding for higher education and, by 2025, will be producing around 80,000 STEM Ph.D.s per year — twice as many as the U.S.
China’s spending on research and development has jumped to 2.56 percent of GDP, though some of that funding is coming from businesses; still, that is more than triple the U.S. federal investment of 0.7 percent, which has been in decline for over a decade. Furthermore, China recently overtook the U.S. in science and engineering publications, and in 2022 ranked No. 1 in contributions to the prestigious Nature group of science journals, surpassing us for the first time.
We can’t risk lagging behind for much longer. Let’s set the not-so-lofty goal of catching up over the next eight years to our principal global rival by tripling federal R&D investment in math, science and engineering, and doubling our STEM Ph.D.s.
Significantly increased funding and attention to STEM research and education can be the catalyst for the U.S. to win the Earth Race, as well as spawn breakthroughs on other critical fronts. It will accelerate advances important not only for climate solutions but to the future of our national economy and defense posture, in fields such as quantum computing, AI, data science, medicine, optimization, advanced materials, photonics and energy storage.
We’re all in the same boat: planet Earth! The sheer complexity, scope and highly interdisciplinary nature of climate issues necessitate that we work together, across ideological, academic, intellectual and political lines, to achieve big goals that will benefit all of us. These problems are solvable. We have the talent, the ingenuity and the motivation to succeed. Increased investment in STEM, with our sights set on winning the Earth Race, will jumpstart our economy through the development of new solutions and will pay substantial dividends as we sail forward.
Let us set the compass toward our highest aspirations: “through adversity to the stars.”
Kenneth M. Golden is a distinguished professor of mathematics and adjunct professor of biomedical engineering at the University of Utah.
Copyright 2024 Nexstar Media Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed..